Positive-negative response model of exercise on performance

Fred Grappe

Head of Performance - FDJ Cycling Team
University of Franche Comte, EA4660, C3S Health & Sport Department, Besançon, France
During effort the cyclist passes through different states of sensations...

I make an effort, so I think...

1) I'm on an “air cushion” today!

2) What I feel good today!

3) I feel good today!

4) I do not feel very well today!

5) I do not feel well at all today!

6) It’s too hard today!

Between different days...
During a day...
Different feelings in the same day with different positive-negative responses

I feel good today!

I do not feel well at all today!

I do not feel very well today!
A search of the best feelings during the races...

I don't yet have the speed in my legs

I felt fatigue in the legs and it loose in the head...

I want to find good feelings
Stimulation - Performance Cycle

- Stimulation
- Deformation
- Assimilation
- Adaptation
- Good feelings
- Excellent feelings
- Bad feelings
- Very bad feelings

Important period to search for the best feelings during the races.
Is there a phenomenon "good day - bad day"?

Is it possible to analyse to the day to day variability (DDV)?

What are the mechanisms underpinning DDV in athletes?

What are the effects of the DDV on the level of performance?

Is there a concept of cyclists responders and non-responders?

Why the leaders rarely have bad days?

Why in stage races the leaders have great regularity of form every day?
How the cyclist sets the power he develops?

Voluntary stimulation

Group III/IV muscle afferents could play an inhibitory influences on central motor drive during exercise

Corollary discharge model

Neural process

RPE

Power output
Affective Load model
(Baron et coll., 2009)

Central motor command

Effort
10 Maximal
9
8
7 Très fort
6
5 Fort
4
3 Modéré
2,5
2 Moyen
1,5
1 Faible
0,5 Extrêmement faible
0,3
0 Aucun

Motivation +/-

Level of acceptance of AL

Selection of an intensity

Power output

Physiological responses

Neural process

Affective Load (AL)

Memorized emotions

Voluntary control
Balance between the Affective Load and the level of AL acceptance

Level of acceptance of AL (motivation)

Affective Load

panic
challenge
Performance
control
easy
I'm on an “air cushion” today!

I do not feel well at all today!

I feel good today!
Different perceptive processes to develop power output...

How the brain manages these different processes to produce PO?
What is my margin of comfort before to not being able to control my effort and to undergo it?
I put myself in the red, I have to drop my pacing.

I have no margin, I no longer try to follow.

I have again small margin, I can accelerate...
Stimulation balance between physical and mental potential

We train to improve the physical potential and we go in competitions to test and search good feelings.

Level of performance

Physical potential

Pre-season

Mental potential

Competitive season
Factors affecting the "good day - bad day" phenomenon

- a lot of factors act,
- difficult to identify one determining factor,
- there are many interactions,
1 - Training loads management

Training loads

Athlete

Physical aptitude

Fatigue

Performance

positive effets

negative effets

+ / -

Effects of training loads on athlete's performance, considering physical aptitude and fatigue.
Perceptual response during exercise

Is a complex process

Five cumulative training loads (TL) play an important role

Analyze of the training intensity distribution (TID)
Variability in the record power profile between the weeks

Evolution of the power records during the 2016 season
Different positive - negative responses during the season
Week 1: bad feeling
Week 2: good feeling
Week 3: Excellent feeling

The race is over with a level of fatigue not maximal with a relative freshness
Tour is over due to illness but having had some good feelings in general.
Stimulation profile during the Giro 2016 to a teammate sprinter
2 - Environmental conditions

Important effects of heat on RPE at different intensities

Hot (H) and Cold (C) environments at 55, 65, 70% of PMA (Crewe et coll, 2008)

Important effects of heat and hypoxy on power output

Power output during a selfpaced time trial in COOL, HOT, and HYP conditions (Périard et Racinais, MSSE 2016)
Evolution of internal temperature in a cyclist during a race

Body Cap

e-Celsius®
3 - Peripheral and central fatigue
Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity and characterized by subjective feelings of “tiredness” and “lack of energy”.
Mental fatigue impairs physical performance...

Effect of mental fatigue on perception of effort during high-intensity cycling exercise to exhaustion at 80% of peak power output (Marcora 2009)
To perform optimally, athletes must be able to employ different attentional strategies to control external and internal distracters, while focusing on body and task-relevant cues (Tenenbaum, 2001, 2005).

Association occurs when athletes monitor their body sensations (e.g., respiration rate, body temperature, muscle pain and tightness).

Dissociation occurs when individuals ignore pain, fatigue, or boredom by directing their attention outwards or by focusing on pleasant stimuli.
The Multi-Action Plan Model (Bertollo & di Fronso, 2015)

Different attentional strategies lead to different performance states.

The MAP model is idiosyncratic in nature, thus assuming that one’s strategies and behaviors during performance are unique.
6 - Individual Zones of Optimal Functioning (IZOF)
Hanin and Yuri (1997, 2000)
Cognitive control operates via two distinct modes: proactive control and reactive control.

One can speculate that prolonged endurance activity in itself may induce mental fatigue and reduce regulatory control.
Mood has been the most extensively studied aspect of human behavior, with a large portion of the general population undergoing seasonal deteriorations in mood in winter.

The blue dots represent individual raw data and the black line represents the sinusoidal fit. Fitted maximum of subjective mood was observed on October 31.
In humans, light also regulates sleep and wakefulness and constitutes a powerful stimulant for alertness and cognition.

The integration of light exposure over long periods of time can help optimize cognitive brain function.
Motivational self-talk should be effective at not only enhancing motivation but at regulating effort.

Motivational self-talk reduced RPE and increased time to exhaustion during high-intensity cycling exercise.
Others important factors...

11 - Geometry of the field

12 - Pacing of the race

13 - Perception of the shape of the others

14 - Level of motivation

15 - Mental toughness

16 - hydration status

17 - sleep/wake rhythm

18 - food intake

19 - social interactions
What role of the coach near the athlete?

Understand the athlete and learning to tame his answers. As every athlete has their own answers, the coach needs:
- to understand
- to analyze
- to give the best answer

Athletes have the ability to rate effort independently from other sensations related to the exercise. Consequently, special attention is to be paid by coaches to ensure that subjects do not include other exercise related sensations in their rating of effort.

What settings?

Sensitivity of the buttons?

What buttons to set?

What is the perceptual sensibility of the athlete?

Find innovative applied perspectives to decrease perception of effort in athletes.
The global model of pacing’s process